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Abstract. Update of a system of units has always meant – and should mean – upgrade of the set 

of base units of the system of units. The forthcoming redefinition of the base units doesn’t have 

such a purpose; therefore there are no grounds for speaking of a New SI. This article lists the 

changes in the set of base units, which – according to the author – can lead to a genuinely New 

SI.  

 

1. What the Term "New SI" Should Mean 

 

1.1 Redefinition of Units Doesn’t Revise the Set of Base Units 

The forthcoming redefinition of the base SI units [1] based on the fundamental physical 

constants (FPC) has agitated the whole world of metrologists and caused an avalanche of 

approvals, objections, corrections, and suggestions, touching upon not only the redefinition of 

units itself, but other aspects of metrology as well. The term "New SI" was coined.  

But all the base SI units remain the same. What is being suggested is giving them new 

definitions that would enable to define the base unit values more accurately. Is revision of unit 

definitions a sign of a New SI? 

Throughout the history of metrology a system of units was considered as new when the 

set of base units (system basis) of the system was changed. This happened in 1901, when CGS 

(the centimeter–gram–second system) was replaced with MKS (meter-kilogram-second), and 

later in 1935 – with MKSA (meter-kilogram-second-ampere). This also happened in 1954, when 

the MKSA system was extended to include new units and became known as meter-kilogram-

second-ampere-kelvin-candela system; since 1960 this system is known as SI. Finally, a New SI 

could be spoken of in 1971, when SI got its seventh base unit, mole, the one most widely 

discussed today.   

At the moment the situation is ambiguous. On the one hand, the base units of the SI are 

based on the base quantities [2, clause 1.10], while the ISQ on which SI is based [2, clause 1.6, 

note 2] has 7 base quantities [2, clause 1.4, note 1]. These base quantities are not going to be 

changed as a result of units redefinition. Therefore there are no grounds to speak of a New SI; 

rather, we can speak of the higher-quality, more accurate, more reliable SI.  

Nevertheless, it is being said [2, clause 1.4, note 3]: "‘Number of entities’ can be 

regarded as a base quantity in any system of quantities.", presumably meaning ISQ as well. If 

this gets implemented, ISQ will have eight base quantities, SI will get the eighth base unit, and 

there will be grounds to speak of a New SI. This situation is described in article [3, section 5], 

but its author concludes: "to say that countable entities need a metrological unit ‘one’, is equally 

unwise as to say that the units of the base SI quantities should be tied up with the metrological 

unit ‘one’". Hereafter, in section 3.2, we will express a different point of view.  

The review article [4] devoted to history of the recent 50 years of the SI development, 

clearly shows well-grounded intentions of some metrologists to revise the base units, but not in 

the format that is currently being suggested. These intentions are supported with grounded 

assumptions.  

Surely, the advocates of the forthcoming redefinition of the main SI quantities are well 

aware of all this, but consider revision of the base quantities ungrounded [5]. It’s their right to do 



so, but in this case redefinition of the units cannot be considered as a sufficient ground to use the 

name ‘New SI’. Without a doubt, redefinition of units based on FPC is quite a useful and 

important activity, but it doesn’t constitute creation of a New SI.  

 

1.2. On the Necessity of Revision of the ‘Dimension’ Definition 

On the way to units redefinition an important event is happening in metrology: the 

dimension recording rules of derived units are being changed. For instance, in [1] the unit of 

electric charge is represented not as C = s∙A, but as C = s A; the unit of energy is represented not 

as J = m
2
∙kg/s

2 
, but as J = m

2
 kg s

–2
. This demonstrates negation of the metrological 

multiplication and division. The article [3] also states that "metrological multiplication doesn’t have 

any concrete physical or chemical sense".  
The negation of metrological multiplication requires revision of the definition of dimension [2, 

clause 1.7]: "expression of the dependence of a quantity on the base quantities of a system of 

quantities as a product of powers of factors corresponding to the base quantities, omitting any numerical 

factor". It could be replaced, for instance, with such a definition:  

"Dimension of a base quantity is represented by the symbol of this quantity defined by the 

standard. Dimension of a derived quantity is represented by consecutive record of the base quantities 

and their powers, not separated with spaces." It would be useful to include the following notes with 

this new definition:  

1. "The dimension symbol of a base quantity is as a logical operator in the same way as 

‘ln’, ‘sin’, ‘exp’, and therefore does not represent a quantity. It is possible to add that the 

dimension symbol shows the kind of quantity that is being defined [2, clause 1.2].  

2. "The order in which the symbols of the dimension of a derived quantity are recorded is 

conventional and is defined by the standard."  

 

1.3 Critical Analysis of the "Quantity of Dimension One" Concept 

According to [2, clause 1.8], it is "quantity for which all the exponents of the factors 

corresponding to the base quantities in its quantity dimension are zero". "For historical 

reasons", according to note 1, it is also suggested to keep the term "dimensionless quantity". 

But if the exponents of the factors in the dimension of a quantity are zero, this doesn’t 

necessarily mean it has no dimension at all. That is why [2] prefers the term "quantity of 

dimension one".  

This term includes several types of quantities that are completely different in nature, and 

it would be expedient to assign dimension to some of them. So the term "dimensionless quantity" 

shouldn’t be kept in use in metrology; its use should be limited to the works on history of 

physics and metrology. In the same way, the term "dimensional quantity" is to be left for 

historical use only, since every quantity should have a dimension.  

Let’s pay attention to Note 3 of [2, clause 1.8]: "Some quantities of dimension one are 

defined as the ratios of two quantities of the same kind." The word "some" implies that not all of these 

quantities can be "defined as the ratios of two quantities of the same kind." Meanwhile, Note 4 says: 

"The number of objects is a quantity of dimension one". Therefore the Notes 3 and 4 prove that the 

name ‘quantity of dimension one’ combines at least two different concepts. 

The definition of ‘quantity of dimension one’ mentions ‘factors’ in the quantity 

dimension. But since metrological multiplication is not accepted as legitimate, the very 

definition of ‘quantity of dimension one’ should be corrected. For instance, we can suggest the 

following definition: "the quantity, which, being a factor of any quantity equation, doesn’t 

change the dimension of the quantity defined by that equation."   

The article [4] distinguishes 4 groups of quantities of dimension one.  

Group One representing similarity criteria is analyzed in section 2 of this article. The 

article [3] contains the idea that ‘dimensionless quantities’ should be rather called ‘unitless 

quantities’. But section 2 will show that similarity criteria have off-system units. 

Group Two includes quantities that can be united under the term "number of entities". 

The following is said about them in [2, clause 1.4, note 3]: "‘Number of entities’ can be regarded as 



a base quantity in any system of quantities." Hence we can make a conclusion that ‘number of entities’ 

can have its own dimension and units. They will be discussed in section 3 of this article.  

Group Three includes quantities describing rotation. SI has a system unit for some of 

them – it is radian. They will be discussed in section 4 of this article. However, the quantities 

describing rotation are included into a bigger group, "cyclic quantities", which also includes 

quantities describing oscillations and waves; they will be discussed in section 5 of this article. 

Group Four includes logarithmic relationships that have their own units (e.g., decibel, 

neper). There is no rational solution suggested for them yet. That’s why they shouldn’t be 

included into classification of quantities of dimension one. 

Thereby, the concept of "quantity of dimension one" includes 3 essentially different 

groups of quantities, one of which is divided into 3 subgroups (see fig. 1). Their detailed analysis 

allows to truly update SI. 

 

 
 

 

 

 

 

 

 

 

                         Fig. 1. The hierarchical chart of quantity of dimension one 

 

2. The Content of the Concept ‘Similarity Criteria’  

   

2.1. Quantity Equation that Defines Similarity Criterion 

Analysis of definition of the measurement process shows the following. According to [2, 

clause 2.1] the term ‘measurement’ is defined as the "process of experimentally obtaining one 

or more quantity values that can reasonably be attributed to a quantity." There is also Note 2: 

"Measurement implies comparison of quantities or counting of entities."  

If we take into account the fact that dimension of a quantity is at the same time the 

dimension of its unit, we can see that dimension appears only when there is a unit with its 

dimension recorded beside the numerical value. This means a unit has to be used with a 

‘dimensional quantity’, but doesn’t have to be used with a ‘dimensionless quantity’.  

Let’s take a look at the following metrological equation [6, 3]  

 

Q = {Q} [Q],                         ( 2.1 )  

 

where Q ‒ analyzed quantity, {Q} ‒ its numeric value, [Q] ‒ unit of the quantity. Similarity 

criterion is the numeric value {Q}, while the unit [Q] is the basis of the similarity criterion. 

Dimension of the basis defines dimension of the similarity criterion. If [Q] is an system unit, 

then Q is usually called a "dimensional quantity", since Q is connected with a given system of 

units. If [Q] is an off-system unit, then the numeric value {Q} becomes a sort of ‘dimensionless 

quantity’, since it is not advisable to use off-system units in the SI.  

If we rewrite the equation for similarity criterion {Q} as  

Quantity of Dimension One 

Numbers of objects Cyclic quantities 

describing: 

Similarity criteria 

 

rotation             oscillation           waves 



 

{Q} = Q  [Q]
‒1

 ,                    ( 2.2 )   

 

it becomes clear that {Q} is a ‘quantity of dimension one’ in any case, since the similarity 

criterion Q and its basis [Q] have identical dimensions. Therefore, if the unit [Q] is an off-system 

one, this doesn’t necessarily mean that the quantity Q doesn’t have a unit. At the same time, the 

lack of basis [Q] is also unacceptable, because in this case the equation (2.2) looses its sense.  

Let’s give practical examples. 

      

 2.2. The Distinctive Feature of Similarity Criteria  

Example 1. Let’s compare the equation (2.1) with the formula for volume of the 

combustion chamber V above the combustion engine piston:  

 

V = ε Vk ,                            ( 2.3 ) 

 

where Vk – is the volume of the combustion chamber when the piston is in its upmost position; ε 

– compression ratio. If we agree to consider Vk as an off-system unit in this field of technology, 

then equations (2.1) and (2.3) become identical. The content of compression ratio ε becomes 

non-different from the similarity criterion {Q} in (2.1). The off-system unit for the volume of 

combustion chamber Vk has dimension of volume.   

Example 2. Let’s write down the quantity equation for velocity of airplane v: 

 

v = М vs ,                            ( 2.4 )  

 

where vs – velocity of sound in the atmosphere; М – Mach number. Let’s assume that the 

airplane is flying in the air at temperature 0ºC and air pressure 1 atm at a speed of 662 m/s. In 

this case Mach number equals 2. The velocity of sound vs can be considered as a off-system unit 

of aerodynamics. Mach number М then becomes non-different from a similarity criterion, which 

it in fact is. It is no coincidence that in this case aviation specialists would say that the airplane’s 

velocity equals two Mach numbers. The off-system unit vs for velocity of sound has dimension 

of velocity. 

Example 3. In atomic physics a particle’s intrinsic moment of momentum L, which is 

also called spin, is described with the quantity equation L = ħJ , where ħ = h/2π – reduced 

Planck constant, h – Planck constant, J – spin quantum number. Physicists usually call both the 

"dimensional quantity" L and the "dimensionless quantity" J by the same name – spin, though 

two essentially different quantities shouldn’t be called by the same name. Therefore it is correct 

to write the quantity equation as 

 

L = J ħ .                            ( 2.5 ) 

 

In this example spin quantum number J is a similarity criterion, and the off-system unit of 

the reduced Planck constant ħ has dimension of action in the SI. For more detailed discussion of 

this, see section 3.6. 

All the three similarity criteria (ε, М and J) from these three examples have dimension 

one, while each dimensional quantity (Vk, vs and ħ) is an off-system unit. And each of these off-

system units has dimension different from 1.   

Surely, if we take into account the huge number of different similarity criteria, each of 

which can have its own off-system unit, we can easily imagine how anxious the metrologists can 

get because of the huge number of off-system units. But the off-system units similar to the ones 

shown above really exist in practice, though they are not called by this name.  

Off-system units can correspond to quantities with different physical content. For 

instance, reduced Planck constant ħ is a fundamental physical constant, Vk has fixed value only 



for a given type of combustion engines, and the value of velocity of sound vs depends on 

characteristics of the air at the point where the airplane is. Spin quantum number J can be either 

an integer or a half-integer number, while Vk and vs are noninteger numbers. It is quite acceptable 

to use phrases like “1.5 volumes of combustion chamber Vk” or “3/4 of the sound velocity vs.” 

Many similarity criteria use variable quantities as their basis. For instance, the basis of the 

Reynolds number is friction force of the liquid on the wall, which depends on many factors. 

Coclusion: similarity criterion is a ratio of a dimensional quantity to its basis, which has 

the same dimension and unit as the dimensional quantity, and is an system or an off-system 

unit of the dimensional quantity. 

 

2.3. An Option of Recording Dimensions and Units for Similarity Criteria  

The physical content of a criterion can be derived only from its own quantity equation (if 

it is provided), and – indirectly – from the name of the similarity criterion. But the name is at 

best a verbal formulation; to a certain extent it is merely a convention. Is it possible to reflect the 

physical content of a similarity criterion by means of dimensions and units?  

The author of the article [7] tried to follow the dimension definition (see Section 1.2) 

literally. As a result, he started recording dimension of a similarity criterion as the dimension of 

its basis raised to the zero power (zero is permissible as a power of dimension). Then, for 

instance, the dimension of relative linear deformation becomes L
0
, and its unit is m

0
; dimension 

of the Mach number equals (LТ
−1

)
0
, and its unit is (m s

−1
)
0
. Such a notation immediately makes 

the differences between similarity criteria visible. This suggestion can be especially useful for 

teaching hydraulics and heat engineering, where many different similarity criteria are used.  

There is only one requirement for this option: we should take into account the quantity 

equation that is initial from the point of view of the quantity content, rather than the form of the 

quantity equation that was obtained after cancellation of several quantities in the numerator and 

denominator of the quantity equation. For instance, as the dimension of the Reynolds number we 

should use not the dimension of dynamic viscosity η (based on the popular formula Re = udρ/η), 

but the dimension of force, since the Reynolds number is the ratio of inertial forces to viscous 

forces. This means, the dimension of the Reynolds number in the SI can be written as (LMT
−2

)
0
, 

and its unit as N
0
.   

 

2.4. Unsystematic Naming of Similarity Criteria and Its Reasons 

 Similarity criteria have a number of different names in physics and technology, for 

instance, ratio (compression ratio, friction ratio, transmission ratio), number (Mach number, 

spin quantum number), or coefficient, though each of these terms has a different sense and 

content in mathematics. 

Different kinds of similarity criteria can be found in every mathematical and technical 

discipline. Scientists were using them long before the theory of similarities itself was formed. 

And this is what caused such unsystematic naming.  

For instance, in similar triangles the trigonometric functions of all the angles are criteria 

of geometrical similarity. The most ancient similarity criterion in mathematics is π – the relation 

between the circumference and its diameter. It is more correct to compare the circumference to 

its radius. However, this similarity criterion was devised so that it was convenient to calculate, 

because diameter can be measured much more conveniently and precisely than radius. 

We have to accept that this is exactly how science was progressing: the obvious, 

convenient similarity criteria were chosen and fixed, and they were named the way their 

discoverers named them. Over time, this made teaching and learning science more complicated. 

As a result, methodologists of science have to face a collection of practicalities and inaccuracies 

piled up over centuries, and sooner or later they it has to be disposed of. 

 

 

 



3. The Content of the Concept ‘Number of Entities’ 

 

3.1. The Distinctive Feature of the "Number of Entities" Concept 

Practically in every branch of physics one can find a countable quantity with the 

following content: number of entities of homogenous system. The unit of this quantity has 

numerical value that equals to a positive integer. Universality of this quantity is discussed in the 

article [8]. This quantity does not depend on any other quantities. It doesn’t have a quantity 

equation. Back in the SI8 it was suggested to treat the number of entities as the base physical 

quantity in any system of units, and include it into the base quantities of the SI, which is also 

reflected in [2, clause1.4, note 3]. We suggest to use N as the symbol of this quantity; the name 

of its unit will be discussed in the end of this section. 

Below is review of applications of the numbers of entities, based on the article [9], where 

the number of entities is named as the number of structural elements, the conventional term of 

the Russian standard concerning amount of substance.  

The fact that the number of entities can be only integer doesn’t mean that the counted 

entities cannot be divided into parts. But in this case any part becomes an entity of another 

system, which is on a different level of state of matter. For instance, the entities of which gas is 

comprised are molecules. At high temperatures the molecules of the gas ionize, and the products 

of molecular decomposition become parts of plasma, that is, a different state of matter. Let’s 

give examples of the concept "number of entities" in different cases.  

 

3.2. Number of Entities in Molecular Physics 

One of the system units of the SI is amount of substance. According to the definition, 

“Amount of substance n is a physical quantity that measures the size of an ensemble of 

elementary entities, such as atoms, molecules, electrons, and other particles”. In the SI this 

quantity has dimension N; its unit is mole. It is defined by the equation 

  

n = N /NA ,                        ( 3.1 ) 

 

where N is the number of objects in a homogenous system; NA – Avogadro constant; its unit is 

mole
-1

. Numeric value of the Avogadro constant is called the Avogadro number АN. It equals the 

number of atoms in 0,012 kg of the carbon isotope 
12

С.  

According to the definition [2, clause 1.4] a base quantity is "a quantity in a 

conventionally chosen subset of a given system of quantities, where no subset quantity can be 

expressed in terms of the others". According to the equation (3.1), amount of substance n 

depends on the number of entities N and the Avogadro number NA. Thus, assigning amount of 

substance n as the base quantity contradicts the definition of the base quantity. The reason of this 

alogism is hidden in the two words from the definition of the base value: ‘conventionally 

chosen’.   

Many chemists and metrologists disagree with the unit of the Avogadro constant (mole
-1

). 

This is well described in the article [10]: "I cannot understand which natural quantity can have a 

unit 1 per mole (1/mole) and what it conforms to. Traditionally, measurement units of the kind х 

per something (x per second, x per meter, x per mole etc.) are measurement units of real 

quantities, and I think this requirement should be met. In other words, to my mind kilogram per 

mole has sense, and 1 per mole doesn’t." A review of the numerous critical remarks concerning 

the mole unit can be found in the article [4, problem 6]. 

The unit 1 per mole doesn’t follow unambiguously from the equation (3.1). If the number 

of entities N had its own unit (for instance, piece), it would follow from the equation (3.1) that 

the Avogadro constant has a unit pieces per mole, which has clear physical sense. This is how 

the introduction of the number of entities as a base unit of the ISQ can remove an existing 

alogism.  



The same problem can be solved in a totally different way, by conversion of the equation 

(3.1) into the quantity equation 

 

 nA = N /АN  ,                  ( 3.2 ) 

 

where the Avogadro number АN will have dimension N and unit piece. In this case the amount of 

substance will be defined by the similarity criterion nA, the numeric value of which will be 1 if 

the number of entities N = АN. In this case, there will be no need in the mole unit at all. Chemists 

should decide if such a solution is suitable for them. But it would surely make metrologists’ life 

much easier.  

 

3.3. Number of Entities in Periodic Processes 

Let’s consider a quantizable periodical process, that is, a process consisting only of an 

integer number of oscillation periods. In such a process each specific oscillation period is an 

elementary entity of a periodical process. Surely, such representation of periodical processes is 

artificial, since a periodic process is continuous, and each period can be divided into fractions 

(has phase). Nevertheless, it is used quite often, especially for high frequencies.  

In this approach the ‘number of periods’ can be considered as a particular case of the 

‘number of entities’. The same can be said about wave propagation and the ‘number of waves.’  

 

3.4. Number of Entities in Informatics 

Introduction of the number of entities as a base quantity can help to solve one more 

problem that causes lots of discussions: is amount of information a quantity?  

The amount of information usually stands for measure of information in a message. This 

quantity has its own unit in the informatics – it is called bit and defined as a unit of the amount of 

information in the binary computing, the minimal unit of the amount of information that can be 

transmitted or stored, and corresponds to one binary digit that can have one of the two values, 0 

or 1.  

Each bit can be represented with energy state of a technical device (trigger), which saves 

or transmits information. The fact that the trigger output has only two possible options of the 

number of entities (0 or 1), rather than, for instance, 10 as in the decimal system, doesn’t make 

any essential difference. What differs the amount of information as a number of entities is the 

fact that its unit has numeric value in the binary system.  

There is one more unit used in informatics; it is byte, and it equals 8 bits. It is the smallest 

addressable data unit in the memory of a computing machine. In this case octal system is used 

instead of binary.  

 

3.5. Number of Entities in Economics 

‘Goods’ is one of the main concepts of economics, and ‘quantity of goods’ is one of the 

main economic quantities. In most cases this economic quantity is measured in one of the three 

ways: in units of volume (cubic meter, liter, barrel, ounce, etc.), in units of weight (kilogram-

force, ton-force, pound-force, etc.) and in pieces. As the packaging technologies evolve and gain 

increasingly wider use in loading, transportation, storage, and sales, and as a result of widespread 

use of containers, piece becomes the most popular unit for quantity of goods.    

 

3.6. Number of Entities in Quantum Mechanics 

As number of entities is introduced as a base quantity, in quantum mechanics this results 

in changing dimension and unit of the physical constant known as the Planck constant and 

denoted as h. The Planck constant is a quantum of the physical quantity ‘action’; its content is 

defined with the following equation:  

 

h = ε/ν ,                          ( 3.3 ) 



  

where ε – energy of one quantum of electromagnetic radiation; ν – frequency of quanta radiation. 

Based on equation (3.3), the Planck constant can be seen as amount of energy per unit of 

radiation frequency.  

In the SI units, the Planck constant is expressed in joule seconds (J s). This unit is derived 

from equation (3.3) if we assume that the unit of frequency is 1 per second (s
-1

) – though such a 

unit wouldn’t have more sense than mole
-1

. 

In the quantum mechanics the word ‘quantum’ can be rationally used to denote the unit of 

the number of entities. Wikipedia gives the following definition of quantum: "the minimum 

amount of any physical entity involved in an interaction." If we use quanta per second as a unit 

of frequency ν, dimension analysis of the equation (3.3) shows that the unit of Planck constant is 

(joule s quantum
-1

).  

Using SI unit doesn’t allow to conclude that ε is quantity of energy of one quantum. This 

conclusion becomes possible only if we use a different unit for frequency ν: (quantum s
-1

) and a 

different unit for Planck constant h (joule s quantum
-1

). The existing unit (joule s) is legitimate 

only we replace the energy of one quantum ε with the energy of n quanta εn, measured in the unit 

(joule quantum) in the equation (3.3).   

If the reduced Planck constant ħ = h/2π is being used, it has a quantity equation different 

from equation (3.3):  

 

ħ = ε/ω0 ,                         ( 3.4 ) 

 

where ω0 – angular velocity of rotation of radius vector on the coordinate plane in the method of 

vector diagrams. Let’s note that the word ‘reduced’ is often omitted in the literature, so when 

Planck constant is mentioned, it’s often not clear whether they mean h or ħ. 

Based on equation (3.4), ħ can be understood as quantity of energy per unit of angular 

velocity of the radius vector. But this explanation doesn’t tell anything about the physical content 

of ħ, since ω0 a mathematical quantity that’s artificially introduced into physics. Quantum 

mechanics discusses radiation, and not the unidirectional rotation of the radius vector that can be 

characterized with its angular velocity. The constant ħ is a mathematical interpretation of the 

Planck constant h – but it’s mathematics rather than physics. 

Any angular velocity should have unit revolutions per second or radian per second. In 

order for the equation (3.4) to comply with the dimension rule, we should assign the unit 

(revolutions quantum
-1

) to the factor 2π in the expression ħ = h/2π. This is how one ambiguity 

calls for another one.  

In the SI ħ has the same unit as h. This can be one more reason why ħ is often called 

Planck constant. Only the absence of the units for the number of entities and the angular rotation 

in the SI allows the expression ħ = h/2π to comply with the dimension rule. At the same time, it 

creates terminological confusion.   

 

3.4. The Usefulness of New Units by Example of Photoelectric Effect Description 

An example of using new units is given in the paper [11, p.р. 168-171], where in the 

description of photoelectric effect the units joule per photon and joule per electron are used to 

measure energy per one particle. (De facto, in both cases the same unit is used – joule per 

quantum.) A. Einstein described energy conservation law of photoelectric effect with the 

following equation: 

 

Ek = hν – Ei ,                    ( 3.5 ) 

 

which in [11] is written the following way 

 

Ek = ħω0 – Φ,                     ( 3.6 ) 



 

where Ek – a photon’s kinetic energy ; hν = ħω0 – photon’s energy; Ei – an atom’s ionization 

energy; Φ – electronic work function. 

The author of [11] discovered that the summands of the equation (3.6) have different 

units: the units of Ek and Φ pertain to one electron, and the unit ħω0 – to one photon. That is why 

in order to comply with the rule of dimensions, ħω0, interpreted as a photon’s energy, should be 

supplemented with a factor Y
−1

, the sense of which is the ratio of the emitted electrons to the 

number of absorbed photons; its unit is electrons per photon. 

De facto, there are two quantities missing in the equations (3.5) and (3.6): the number of 

electrons Nel and the number of photons Nph. If they are introduced, the photoelectric effect 

equation will look as follows: 

 

Nel Ek = Nph ħω0 – Nel Ei . (3.7) 

 

Since Nel and Nph have identical dimensions, the equation (3.7) sustains dimension 

analysis check. As for the factor Y = Nel /Nph known as quantum efficiency, it is a similarity 

criterion, and it can be included into equation (3.7) if we divide both parts of it by Nph. In that 

case, the photoelectric effect equation will look as follows: 

 

Y Ek = ħω0 – Y Ei ,            (3.8) 

 

which describes the physical content of photoelectric effect better than (3.6). 

 

3.7. On the Name for a Unit of the Number of Entities  

The question of naming a unit of the number of entities still remains unsolved. The author 

of [8] shared opinion that number 1 should be seen as a SI unit for the "numbers of homogenous 

elements," being aware that this would lead to update of the SI. He suggested to use symbol I 

and name heis for this unit (from the classic Greek εισ ‒ one); at the same time he mentions that 

such a "unit" is integer in quantum mechanics only.  

As it is shown in this section, different names are used for numbers of entities. The name 

‘quantum’ connects the unit of the number of entities to quantum mechanics; the names ‘period’ 

and ‘wave’ – to the theory of periodic processes; the names ‘bit’ and ‘byte’ – to informatics.  

The general, featureless term is ‘piece’, or Stück in German. In the linguistics this word 

stands for a separate object out of many homogenous countable objects. There is a word with 

similar meaning in every major European language.  

Name of the unit for the number of entities is a matter of international convention. And 

while there is no convention on this subject, the unit for the number of entities is called its 

habitual names. There is even abridged symbolic record for the "piece" unit; for instance, pieces 

per cubic meter can be recorded as pcs m
-3

. 

 

4. Rotation Angle as a Base Physical Quantity 
 

4.1. Classification of Movement Forms 

The correct understanding of the basic concepts of "angular displacement" and "rotation 

angle" depends on classification of the body’s movement modes (see Fig. 2).  

Let’s emphasize: we mean movement of a body, not movement of a point mass. Point 

mass is a mathematical concept, it is not compatible with real movement. If the size of the body 

is sufficiently small, the term ‘elementary particle’ is used. From the mathematical point of view 

this means that the particle’s size should be infinitesimal. It can be so from the point of view of 

macro world, but not the micro world, where the sizes of particle can differ significantly, to say 

nothing of difference in their other properties.  



In the general case, the displacement vector dr of the body’s center of mass is considered 

as the coordinate of state of the moving body. Displacement is a vector connecting the final and 

initial positions of the center of mass of a moving body. But it’s not the displacement that defines 

the movement form, because the coordinates of state are different for different movement forms. 

Classification of the body’s movement forms helps to clarify their coordinates of state.   

 
 

Rotational Movement Form 

               

Orbital Movement Form  
 
                    
 
 
 
 
 
 
 
 
 
 
 
 

 

Fig. 2. Body Movement Forms 

 

.  

1. Straight-line movement form. Its coordinate of state is linear displacement of the 

body’s center of mass. This movement form also allows spinning movement of the body.  

2. Rotational movement form. Its coordinate of state is pseudo vector of the rotation 

angle dφrot of a rotating body. This movement form pertains to the body as a whole, no matter if 

its center of mass is moving or not. Movement of the body’s particles, which are not on the 

rotation axis, is not taken into consideration.   

3. Orbital movement form. It considers movement of the body’s center of mass along a 

curved trajectory with radius of curvature R. In the orbital movement form the coordinate of 

state is the pseudo vector of angular displacement dφorb of the center of mass of a moving 

body. In this movement form the body doesn’t not necessarily have a spinning movement. In the 

general case, the orbital movement form consists of 4 different movement forms: spinning 

movement of the body, rotation of the radius of curvature around the center of curvature of the 

trajectory, and the two straight-line movements of the body’s center of mass (along the radius of 

curvature and perpendicular to it).    

 

4.2. What Is the Difference Between the Rotation Angle and the Angular 

Displacement? 

The term ‘displacement’ is not acceptable for description of rotational movement, 

because ‘displacement’ means change of place. During rotation the body does not change its 

place; its rotation is described by the body’s rotation angle φrot. But its particles that are not on 

dϕrot The body’s 

rotation angle 
Module of the 

body’s rotation 

angle dφrot 

Orbit trajectory 
Angular displacement 

of the body’s center  

of mass 
dϕorb  

 

 

ds – Distance travelled 

 

 

dr – Displacement 

dφorb 

Angular 

displacement 

module 

R 

 
Radius of curvature 

of the trajectory 

Osculating circle 



the rotation axis do change their places; their movement is described by angular displacement 

φorb. That’s why rotation angle is a separate pseudo vector quantity, not the module of angular 

displacement. There is only one similarity between these quantities: both of them are measured 

in the units of plane angle; in the SI they are considered as ‘dimensionless’.  

In the same way, there is essential difference between the angular velocity of body’s 

rotation ωrot =  dφrot /dt and the angular velocity of rotation of radius R of the trajectory of the 

body’s center of mass ωorb = dφorb/dt. For instance, in the Solar system angular velocities of the 

planet’s own spinning movement are considerably different from angular velocity of rotation of 

their centers of masses around the Sun. Moreover, angular velocity ωrot of any planet is constant, 

while angular velocity ωorb of the same planet’s movement around the Sun is variable within 

each orbital cycle.  

As for the angular displacement, there is opinion that it’s not a vector, since it doesn’t 

comply with the commutative rule. But angular displacement is not a true vector – it’s an axial 

vector, or a pseudo vector. 

Virtually all the scientific reality uses concepts "angular displacement" and "rotation 

angle". Therefore it is very important to have everything concerning these quantities strictly 

defined and grounded.  

 

4.3. The Distinctive Features of the ‘Displacement’ and the ‘Distance’ Concepts  
The ‘displacement’ and the ‘distance’ concepts are used for quantitative assessment of 

movement along a curved trajectory (see Fig. 2). The displacement dr in orbital movement is a 

chord subtending an arc or a curved trajectory. The distance ds is defined as the length of the 

trajectory, traversed by the center of mass. It allows to calculate dissipative energy losses during 

the body’s movement. When the body moves along a closed trajectory, it’s the distance, not the 

displacement, in which we are interested, since in the end of an orbital cycle the displacement 

equals zero, while the value of distance increases with each coming cycle.   

Displacement dr in orbital movement is a vector product  

 

dr = [dφorb R].           ( 4.1 )   

 

While the orbit displacement is the distance ds, defined by the scalar product  

 

ds = R dφorb.                ( 4.2 )  

 

If we use the SI units, it follows from the equation (4.2) that the unit of path ds (meter) 

does not correspond to the unit of the product Rdφorb (m rad). This discrepancy was already 

pointed at in the article [7], where it was suggested to consider the unit of the radius of curvature 

R equal m rev
-1

  (in the SI ‒ the unit m rad
-1

). The same point of view was already published 

earlier, in the articles [12, 13]. It is not understandable, why the unit radian is being lost during 

unit analysis of the equation (4.2). 

The unit of the radius of curvature R that equals m rev
-1

 is quite an unusual conclusion 

for physics and metrology, but it doesn’t lead to breaking the dimension rule. On the contrary, it 

leads to the unit of the trajectory curvature that equals rev m
-1

 (in the SI – rad m
-1

) instead of the 

unit currently used in the SI, m
-1 

(inverse meter).  

 

4.4. What Is the Difference Between the Rotation Angle in Physics and a Plane 

Angle? 

There is a very peculiar situation in literature on physics: the angular displacement and 

the rotation angle are often defined as scalar quantities, while their time derivative (angular 

velocity) is always defined as a vector quantity. The reason of this discrepancy is probably the 

fact that both the angular velocity and the rotation angle are assessed in the plane angle units.  



But the plane angle is a geometric figure, and its value is a mathematical quantity, while 

rotation angle is a physical quantity. This is the most general definition of a plane angle in 

geometry [14]: "figure formed by two rays or segments, which are called sides of an angle, that 

have a common end point, which is called the vertex of the angle".   

Angular displacement is assessed not as a physical quantity but as a geometrical one, i.e. 

in the units of the plane angle, by which a dot or a line rotates against around a fixed axis, that is, 

either in radians or in degrees. The following equation is used to define a plane angle: 
 

φ = s/R ,                          ( 4.3 )   

 

where s is a circle arc length; R – circle radius length. What is not taken into account is the fact 

that the plane angle is a geometric figure whose definition says nothing about the circle. That’s 

why the plane angle should not be described with the equation (4.3); in the same way, it 

shouldn’t be described with trigonometric functions of the triangle’s angles.  

Rotation angle is a physical quantity describing rotation of a ray starting from the body’s 

center of rotation against another ray that is considered as stationary. As a physical quantity the 

rotation angle is not defined by any quantity equation.  

The base quantities have no quantity equations by definition, that’s why nothing prevents 

us from choosing the rotation angle (angular displacement) as a base quantity of the ISQ. The SI 

already has a unit for such a base quantity, and therefore it has a dimension, too. The suggestion 

to make radian a base SI unit was already expressed before [15, 7, 4].  

The article [16] suggests including the rotation angle (angular displacement) into the base 

quantities of the ISQ with the symbol А (from the word ‘angle’). Naturally, the dimension of A 

should be included into dimension of every quantity, the quantity equation of which includes 

either the rotation angle or the angular displacement. This pertains to such geometric quantities 

as the area of a circle, the surface of a sphere, the volume of the sphere, etc., if these quantities 

are included into the quantity equations of physical quantities. 

 

4.5. In which Units Should the Rotation Angle Be Measured?   

As follows from the definition of the angle as a geometrical figure, the area of which is 

limited by two rays, its area is infinite. To assess value of an angle, we can use ratio of the 

assessed angle to the full plane angle, formed by full revolution of one ray against another one.  

In the general case, relation of two infinite quantities is indeterminate. But the ratio of the 

infinite area of the assessed plane angle to the infinite area of the full plane angle is a finite 

quantity, since the values of the ray lengths cancel each other out. The ratio can range from 0 to 

1, or from 0 to the full plane angle, the unit of which is called revolution. In practice the full 

plane angle is divided into 360 fractional units (angular degrees); it’s in these units that the 

measurement standards of plane angles are produced. Angular degrees, minutes, and seconds are 

provided in every reference book. This means, in practice the degree measure of the plane angle 

is used. 

In theoretical physics, the radian measure of plane angle is most widely used; radian is 

also a fraction of a revolution, though not sufficiently precise one. Moreover, radian doesn’t have 

a measurement standard. Therefore it’s quite puzzling that radian is chosen in the SI as a unit of 

angle, and the unit revelation is prescribed not to be used. If this is so, they should have also 

removed the definition of the plane angle as a geometrical figure from metrological standards, 

but the definition is still there. This is the first inconsistency in the definition of the angle. The 

second inconsistency is the fact that in every definition and metrological standards the plane 

angle is assessed as a ratio of angles, not a ratio of areas.  

Also, if the plane angle is defined as a ratio of a circle arc to the radius of the same circle, 

then both the dividend and the divisor should be measured; in practice, neither of them is 

measured. The length of an arc in physics is not a number; it’s a distance travelled by the body’s 

center of mass, a physical dimensional quantity. 



The author [4] writes that "it’s possible to choose revelation as a base unit, but this would 

require revision of quantity equations for the coherent derived units of other angular quantities. 

The practical compromise can consist in the use of radian as the base unit of angle, so that 

angular velocities, for instance, will be measured in rad/s, not in the ambiguous s
-1

 that is in use 

now. The SI unit for the solid angle, steradian, will be defined as a special name for the unit 

rad
2
." In our opinion, such revision of the plane angle unit would have one more positive 

outcome: it would make theoretical metrology closer to the measurement practice; in fact, 

angular velocities are already being measured in rad/s (rad s
-1

), in atomic physics – in rev/s (rev 

s
-1

), in technology – in rev/min (rev min
-1

).    

According to one encyclopedia, "there is no essential difference between the degree 

measure and the radian measure of a plane angle, but the use of the radian measure allows to 

simplify many formulas". This statement is not indisputable, since simplification of one thing 

leads to complication of another. The use of the factors 2π and 4π complicated writing of 

quantity equations for electromagnetic physical quantities so much, that rationalized systems of 

units were introduced.   

Unfortunately, at the moment it is difficult to replace radians with revolutions in the 

standards pertaining to the plane angle units. We can temporarily accept radian to be used in 

cases when it’s convenient – under one important condition: radian should be defined as a 

fraction of a revolution according to the equation 1 radian = 1/2π rev.   

   

4.6. What Should Be the Units of Quantities Describing Rotation? 
Let’s show how the quantity equations, dimensions and units of the quantities describing 

rotation will look like, if the dimension of rotation angle А and the unit ‘revolution’ are used, as 

it is suggested in the article [16]. 

Kinematic quantities. The dimension of angular velocity ω of a rotating body becomes 

АТ
-1

 with the unit rev s
-1

, and dimension of the angular acceleration ε of a rotating body becomes 

АТ
-2 

with the unit rev s
-2

.   

A new quantity was recently introduced into the SI – angular frequency, also known as 

rotation frequency. In the Section 5.3 we have discussed the incorrectness of this concept and 

unsoundness of its introduction into physics. 

Torque moment. It is defined from the equation of energy gain of a rotating body dW  

 

dW = M dφrot  ,            ( 4.4 ) 

 

where M is the torque moment. As follows from the equation (4.4), the unit of the torque 

moment M has the dimension joule per revolution (joule rev
-1

). In the SI this should correspond 

to the unit joule per radian (joule rad
-1

).  

Sometimes torque moment is defined from the time derived equation (4.4), that is, from 

the equation for instantaneous power P of a rotating body: 

 

P = M ωrot  .                 ( 4.5 ) 

 

The definition of M from the equation (4.5) contradicts the causality principle.  

The unit of the torque moment M in the SI now equals N m = joule; the unit rad
-1

 doesn’t 

exist. Why the radian unit can be used to form the unit of angular velocity but cannot be used to 

form the unit of the torque moment? The SI has no answer for this question.  

The body’s moment of inertia. The Newton’s second law for the rotational movement 

form should be written the following way: 

 

εrot = M/ Jz    ,                      ( 4.6 )   

 



where εrot – angular acceleration of the rotating body;  Jz  – the body’s moment of inertia. 

According to the equation (4.6) and using the unit joule rev
-1

 for the torque moment М we 

conclude that the unit of the moment of inertia Jz should equal J s
2 

rev
-2

, which corresponds to 

the unit J s
2 

rad
-2

 in the SI. At present the moment of inertia Jz has the unit kg m
2
 in the SI.  

If we decode the unit kg with the help of the Newton’s second law F = mina, where min ‒ 

the body’s inert mass, and use the equation kg = J s
2 

m
-2

, we can easily conclude that the unit of 

the moment of inertia kg m
2 

equals the unit J s
2
. If we now compare this unit with the obtained 

from the equation (4.6) unit J s
2 

rad
-2

, we can see that in the SI the unit of Jz has "lost" rad
2
 in the 

divisor.  

Angular momentum. It is defined with the equation: 

  

Lz = Jz ωrot   .                     ( 4.7 )  

 

If we substitute the unit of Jz that equals J s
2 

rev
-2

, and the unit of ω that equals  

rev s
-1

, we will get the unit of the angular momentum Lz that equals J s
 
rev

-1
; in the SI this 

corresponds to J s
 
rad

-1
.    This unit is different from the unit of the Planck constant h that equals 

J s quantum
-1

, since the angular momentum describes continuous rotation, while the Planck 

constant is used in quantum mechanics.    

Moment of momentum. In the literature the moment of momentum is often considered a 

synonym for the angular momentum; it’s denoted with the same symbol Lz. But the physical 

content of the moment of momentum is different, as well as its quantity equation: 

 

Lz = [R p] = [R (min vτ)] ,    ( 4.8 ) 

 

where the tangential velocity of the body moving along the orbit vτ = [R ωorb]. This means that 

angular velocities included in the equations (4.7) and (4.8) are different both in value and in 

content. That is why the angular moment and the moment of momentum should not be 

considered as synonyms. Using the unit of the radius of curvature R that equals m rev
-1

, we 

obtain the unit of the moment of momentum that equals kg m rev
-1 

s
-1

, or J s
 
rev

-1
.  

The moment of momentum and the angular momentum have identical units, but they 

shouldn’t be considered as synonyms. The content of the quantity is defined by its quantity 

equation, not its unit.  

Moment of force. There is a difference between the moment of force and the torque 

moment, which is not noticed in modern metrology. The moment of force N is connected with 

the force with the following equation: 

 

N = [r F],                          ( 4.9 ) 

 

where r is a radius vector traced to the origin of force F. According to the equation (4.9), the unit 

of the moment of force is N m. The coincidence of this unit with the unit of energy, joule, that is 

often discussed in articles by metrologists, is purely incidental, since the moment of force N is a 

supplementary static unit used for technical calculations. The moment of force N doesn’t create 

rotation; it just characterizes the possibility of rotation to happen. Unlike the moment of force N, 

the torque moment M is a dynamic quantity, and its unit is J rev
-1

. The units of the moment of 

force and the torque moment don’t coincide.  

If we identified the torque moment with the moment of force, that is, if we defined the 

torque moment with the equation  

 

M = [R F]    ,                        ( 4.10 ) 

 

where R – radius of curvature of the movement trajectory,  we would get a different unit of force 

equals J m
-1 

rev
-1

 = N rev
-1

, since the unit of the radius of curvature R is m rev
-1

, as it was shown 



in the Section 4.3.  (In the SI this would correspond to the unit J m
-1 

rad
-1

 = N rad
-1

). But the unit 

of force equals J m
-1

. This is one more reason not to identify the torque moment with the moment 

of force.   

If we still tried to identify them, there would be necessity to distinguish the unit of force 

F in the straight-line movement form from the unit of the rotary force Forb in the orbital 

movement form.   

The reasoning explained in this Section shows that there is no consensus concerning the 

rotation angle quantity, and that in the SI the unit of the rotation angle is sometimes applied in 

the units of rotational quantities, and sometimes not. In this regard the author thinks that his 

opinion once shared in the article [7] – "it’s time to end the ostrich policy", is still relevant.  

 

5. Units of the Quantities of Periodic Processes 

 

In modern metrology and terminology of periodic processes there are examples of terms 

and units, which raise questions with no answers. For instance, why does SI have three ways to 

represent oscillation phase, each one leading to a different equation to define oscillation 

frequency and a different frequency unit, though their dimension is the same? How should one 

understand the ‘angular frequency’ term in oscillations with no angular movement? Why does SI 

suggest to measure an oscillation period in seconds, though second measures duration of the 

period and not the period itself? Why is wavelength measured in meters, and not in meters per 

one wave? Let’s try to answer these and other similar questions. 

 

5.1. Dimensions and Units of Oscillation Phase and Oscillation Frequency  
There are three ways to represent oscillation phase and oscillation frequency in the SI. 

Oscillation frequency, while having the same dimension, has three different quantity equations 

and three different units in the SI. This diversity is the result of the fact that in the first case the 

oscillation phase is an integer number of periods N within the time interval Δt, in the second case 

it is one period with duration T, and in the third case it is expression (ω0t +φ0), which is a no 

integer number, where ω0 is called angular frequency, and φ0 – the initial phase, which describes 

fraction of the period. The term cyclic frequency is not recommended for use in the SI, though 

any oscillations are a cyclic process. 

 

Table 1. Different Ways to Represent Oscillation Phase and Frequency in the SI 

 
Opti

on # 
Oscillation phase Oscillation frequency 

Term Symbol Dime

nsion 

Unit Term Equation Dime

nsion 

Unit 

1 
Number  

of periods  
N – – 

Oscillation 

frequency 
N / Δt T 

−1
 s

−1
 

2 
Period 

duration 
T T s 

Oscillation 

frequency 
f = T 

−1
 T 

−1
 Hz 

3 
Oscillation 

phase 
ω0t +φ0 – rad 

Angular 

frequency 
ω0 = dφ/dt T 

−1
 rad s

-1
 

 

Option 1. Oscillations are considered as a quantizable process. This option takes into 

account only the time interval Δt, within which an integer number N of full periods take place. 

Oscillation frequency is expressed as ratio of the number of periods to the time interval Δt.   

Let’s pay special attention to the fact that the time interval Δt pertains not to the 

oscillation period, but to the period duration, for which the dimension T and unit second are 

natural. Thus there is no logic in reduction of the term ‘period duration’ to the word ‘period’. It 

is written everywhere, that oscillation period is measured in seconds, though it’s a gross error. 

Oscillation period is an object of cyclic process, an independent physical quantity. This is why it 



is so difficult for one’s consciousness to realize the fact that the true unit of oscillation period is a 

piece, while second is the unit of period duration. It is difficult, but utterly necessary. 

Option 2. The ‘number of periods’ term is not used in this option. Period is described as 

a time interval within which the phase changes by 2π. As a rule, the unit of oscillation frequency 

is written as hertz (Hz). 

Oscillation frequency is defined as a quantity inverse to the period duration. In such 

definition of oscillation frequency there is no physical sense of frequency itself. The only thing 

that’s left is a verbal formulation of the mathematical operation.   

Option 3. It is based on the method of vector diagrams, in which the full oscillation 

phase includes an integer number of circles circumscribed by the radius vector on the orthogonal 

coordinate plane. This is where another term comes from – circular frequency; it is also not 

recommended for use in the SI. 

The method of vector diagrams is a mathematical interpretation of the harmonic 

oscillations. It uses uniform (mental) rotation of the radius vector on the orthogonal coordinate 

plane. The value of radius vector corresponds to the value of oscillation amplitude, while the 

oscillation phase is explained as rotation angle of the radius vector. Projection of the end of the 

radius vector on the coordinate axis performs linear movement according to the following 

equation: 

 

x = A cos(ω0t +φ0),      ( 5.1 )  

 

where x is the current value of the oscillating quantity; A – oscillation amplitude; (ω0t +φ0) – 

oscillation phase; ω0 – angular frequency; φ0 – initial phase. Unlike the 1
st
 option, this 3

rd
 option 

considers oscillations as a continuous cyclic process. 

If we disregard the 2
nd

 option, which pays no attention to the number of periods, we will 

have to consider the 1
st
 and the 3

rd
 options: the 1

st
 keeps the physical content of the oscillation 

process but pays no attention to oscillation phase, while the 3
rd

 pays attention to the phase, but 

interprets the physical content of the oscillation process with a mathematical abstraction.  

 

5.2. On Confusion in Symbols of Oscillation Frequency  
Writing of the equation (5.1) differs from the one given in reference books and textbooks 

with a lower index ‘0’. This index is introduced on purpose, to show difference between physical 

and mathematical quantities: angular velocity of a rotating body ω from angular frequency ω0; 

rotation angle of a rotating body φ from the rotation angle of radius vector φ0. That’s because 

oscillations can be of any nature, including those without any rotating movement.  

Is it normal that one and the same symbol ω is used in literature to denote angular 

frequency, angular velocity of a rotating body, oscillation frequency of electromagnetic 

radiation, and frequency of alternating current in electric engineering? Note that these physical 

quantities are the ones in quite frequent use. Moreover, such confusion can be found in one and 

the same textbook, sometimes on the neighboring pages. In such cases the quantities that are 

different in content should have different symbols – or at least different indices. For this same 

reason, the equation (5.1) in this article is written against the standard, with lower indices "0". 

Here is one convincing example. In the electric technology the reactive resistance in AC 

circuits is often written as XС = 1/(ωC) and XL = ωL, where C – the circuit’s capacity, and L – 

inductance. But in fact there is no angular velocity ω in an AC circuit; instead, there is AC 

frequency f. Consequently, the reactive resistances should be written as XС = 1/(2πfC) and XL = 

2πfL. This is even more important when teaching about electric machines, where we often deal 

with armature’s angular velocity ω, which is very different from AC frequency both in numbers 

and in content. 

 

 

 



5.3. Incorrectness of the ‘Angular Frequency’ Term 

Let’s analyze the "angular frequency" concept (synonyms: radial frequency, cyclic 

frequency, circular frequency), defined as a scalar physical quantity, frequency measure of a 

rotational or oscillatory movement.  

Indeed, both of these kinds of movement are cyclic, but their nature is essentially 

different. Oscillations are multidirectional movement that is not necessarily rotational, while 

rotation is a unidirectional movement described by a vector quantity, which is called angular 

velocity.  

The reason of such incorrect combination of the two kinds of movement is the wide use 

of the method of vector diagrams. However, it makes one forget that the rotating radius vector on 

the coordinate plane in an abstract mathematical quantity, not a physical one. But even in this 

case we should speak of the angular velocity of the radius vector, and not the angular frequency. 

The author has happened to see a scientific article with the following argument aimed to 

justify such the ambiguity of terminology: "Everybody understands everything anyway". It is 

likely that everyone just got used to the status quo. And once one tries to consider it carefully, 

the status quo becomes hardly understandable, especially for students. 

 

5.4. The Necessary Elaborations in Metrology of the Oscillatory Processes 

Oscillation process is described by five physical quantities: amplitude, frequency, phase, 

number of periods, and period duration. Only one of them – period duration – has a concrete 

dimension, dimension of time. The dimension of amplitude is identical to the dimension of the 

oscillating quantity. As for the dimensions of the oscillation phase and the number of periods, 

modern metrology says nothing concrete. 

Let’s consider two variants of representing the oscillation process. 

1. Continuous oscillation process, which corresponds a real process, in which the 

oscillation phase takes into account the fraction of the oscillation period. In the method of vector 

diagrams the phase is defined by the rotation angle of the radius vector. The rotation angle has 

no dimension in the SI; it has only a unit, radian. That is why in the Table 1 the dimensions of 

angular frequency, angular velocity, and oscillation frequency are the same and equal T
−1

. The 

difference between these quantities in the SI can be seen only from their units, and even this is 

not always possible. 

This difference will become clear if the rotation angle becomes a base quantity and gets 

its own unit [16, 4]. The detailed substantiation of such a possibility is given in the article [17] 

and briefly explained in Section 4 of this article. It is suggested to use symbol А as a dimension 

of rotation angle, and it is proven that its unit should be revolution, not radian. In Section 3 it is 

advised to use symbol N and unit ‘piece’ for another base quantity – the number of entities. 

While describing an oscillation process of this quantity can be called a ‘period’. This will make 

the difference between the dimension of the angular velocity АT
−1

 with the unit ‘revolutions per 

second’ and the dimension of oscillation frequency NT
−1

 with the unit ‘periods per second’ more 

salient. It is logical to consider the unit ‘hertz’ (Hz) equal to the unit ‘periods per second’. 

2. Quantizable oscillation process. When it is being used, the number of periods is 

considered only as an integer number, and the oscillation phase is not discussed. The Table 2 

shows how the dimensions and units will change if the suggested update of dimensions and units 

takes place.  

One and the same dimension should not belong to quantities that are different in content. 

When periodic processes are considered in the SI, this condition is not observed, and if the 

suggested update takes place – as one can see from the Table 2 – it will be observed.  

 

 

 

 

 



Table 2. Suggested Changes of Dimensions and Units 

 
Term Expression Dimen-

sion 

Unit Term Expression Dimen-

sion 

Unit 

Periods (SI) Oscillation frequency (SI) 

Number  

of periods 
ω0t – – Oscillation 

frequency 

f0 = ω0t/Δt T
−1

 s
−1

 

Period T T s f0 = T
−1

 T
−1

 s
−1

 

Periods (SI update) Oscillation frequency (SI update) 

Number  

of periods  
N N per 

Oscillation 

frequency 
f0 = N/Δt NT

−1
 per s

−1
 

Period 

duration 
T = Δt/N N

-1
T s

 
per

−1
 

 

5.5. The Necessary Elaborations in Metrology of the Wave Movement 

To describe wave movement, along with the quantities describing oscillation processes, 

two other quantities are used: the wave vector k and the wave number k = 2π/λ, which is the 

module of the wave vector, where λ – wavelength that is measured in meters in the SI. The unit 

of the wave number in the SI is the so-called inverse meter (m
−1

), the unit that doesn’t make 

more sense than inverse second or inverse mole.  

From the formula defining wavelength of electromagnetic radiation λ = 2πc/ω0 follows 

another formula for calculation of the wave number k = ω0 /с, where с – phase velocity of 

electromagnetic waves. When the method of vector diagrams is used with consideration of the 

dimension of the angular velocity of the radius vector ω0 that equals AТ
−1

, and dimension of с 

that is equal to LТ
−1

, after analysis of dimensions we find dimension k, that equals AL
−1

 and has 

the unit rev m
−1

. This corresponds to the unit rad m
−1

 in the SI. But it is definitely not inverse 

meter. 

The same unit rad m
−1

 can be found in the equation for traveling wavefront displacement, 

ξ = A cos (ω0t − kx + α), where α – initial phase. In this case all the summands of the argument 

of the trigonometric function have the same unit, radian. In the SI, where the unit of k equals 

m
−1

, the summand kx has no unit, while the summands ω0t and α have their units.   

Each wave is in essence an entity of wave movement. That is why nothing prevents us 

from counting the number of waves as the number of entities of wave movement with dimension 

N. In this case the dimension of wavelength equals LN
−1

, and its unit is m wave
−1

. This makes 

the physical content of wavelength very clear: it is length of a single wave.  

In physics, it is often convenient to use the quantum wave number kn = N/λn, where N – 

number of quanta, and λn – wavelength corresponding the kind of radiation that is being 

considered. The quantum wave number kn can have dimension L
-1

N and the unit quanta per 

meter (quanta m
−1

), and wavelength λn – dimension LN
-1

 and the unit m quantum
−1

. In this case 

kn should be understood as the number of quanta per one meter. 

 

5.6. On the Name of the Unit for Cyclic Quantities 

The author of article [8] suggested to use symbol I and name heis as a unit for quantity 

with dimension one, that is a no integer number. For this case he considered using prefixes 

mega-, kilo-, santi-, milli-, micro-, pico-, etc. with the unit heis. Later in a different article [18] it 

was suggested to give this unit another name – uno, another symbol – U, and use this unit with 

prefixes for decimal fractions, percent, and ppm. The question of naming this unit is still open 

for discussions. 

 

 

 

 



General Conclusions 

 

Analysis of the "quantities with dimension one" has given the following results: 

1. We have defined the components of this concept (similarity criteria, cyclic quantities 

describing rotation, oscillations and waves, and numbers of entities), and arranged them into a 

hierarchic diagram (Section 1.3). 

2. We have shown that similarity criteria are ratios of dimensional quantities of the same 

kind, and therefore they can be described with the system or an off-system unit of the divisor of 

this ratio (Section 2). 

3. The number of entities should be included into the ISQ as a base quantity with its own 

dimension and unit; the unit for the number of entities is called different names in different 

chapters of physics (Section 3). 

4. The unit for the number of entities should be included into the unit of the Planck 

constant (Section 3.6). 

5. The amount of substance n = N/NA , where NA – the Avogadro constant with unit 

 mol
-1

, should be excluded from the set of base quantities of the ISQ; instead, the similarity 

criterion nA = N/АN  should be used, where АN  ‒ the Avogadro number (Section 3.2). 

6. We provided classification of the forms of body movement, according to which the 

angle of the body’s spinning rotation and angular movement of the center of mass of the body 

moving along a curved trajectory are different physical quantities assessed with the unit of plane 

angle (Section 4.1). 

7. The angular quantities should be included into the ISQ as a base quantity with its own 

dimension and unit; their unit should be described by revolution, assessed with a full plane 

angle; the radian measure of an angle can remain as auxiliary and be used for theoretical 

calculations (Section 4). 

8. The unit for the radius of trajectory’s curvature should be meter rev
-1

, not meter; the 

unit for the trajectory’s curvature is rev m
-1

, not m
-1 

(Section 4.3).  

9. The unit for angular quantity should be present in the units of every quantity describing 

rotational movement, including the torque moment, the body’s moment of inertia, the angular 

momentum, and the moment of momentum (Section 4.6). 

10. The number of oscillation periods and number of waves are particular cases of the 

base quantity "number of entities" and therefore have their dimension and unit that should be 

present in dimensions and units of the oscillation phase, the oscillation frequency, and the wave 

number (Section 5). 

11. The unit second measures duration of the oscillation period, not the period itself; 

oscillation frequency is measured in per s
-1

, not in s
-1

; wavelength is measured in m wave
-1

, not 

in meters (Sections 5.1 and 5.5). 

12. The units m
-1 

(inverse meter), s
-1 

(inverse second), mol
-1

 (inverse mole) and similar 

ones should be discarded, since they have no physical content.  
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